Installation
Requirements
Python 3.11 or higher
Git (for cloning the repository)
Dependencies listed in pyproject.toml
Quick Installation
On Windows
Clone the repository:
git clone https://github.com/AliElneklawy/DataVerse-ChatBot.git cd DataVerse-ChatBot
Run the installation script:
install.bat
This script will:
Create a virtual environment (if needed)
Install all dependencies from pyproject.toml
Set up environment configuration
Manual Installation
Clone the repository:
git clone https://github.com/AliElneklawy/DataVerse-ChatBot.git cd DataVerse-ChatBot
Create a virtual environment (recommended):
python -m venv venv # On Windows venv\Scripts\activate # On macOS/Linux source venv/bin/activate
Install dependencies using uv:
pip install uv uv pip install -e .
Alternatively, use pip directly:
pip install -e .
Create and configure the .env file:
cp .env.example .env # Edit .env with your API keys and configuration
API Key Configuration
The system requires API keys from various LLM providers depending on which ones you plan to use. Edit your .env file to include the appropriate keys:
# OpenAI
OPENAI_API=your_openai_api_key
# Anthropic (Claude)
CLAUDE_API=your_claude_api_key
# Cohere
COHERE_API=your_cohere_api_key
# Google (Gemini)
GOOGLE_API=your_google_api_key
# Mistral
MISTRAL_API=your_mistral_api_key
# DeepSeek
DEEPSEEK_API=your_deepseek_api_key
# Grok (X.AI)
GROK_API=your_grok_api_key
# Email configuration for monitoring
GMAIL_APP_PASSWORD=your_gmail_app_password
Directory Structure
After installation, the following directory structure will be created:
DataVerse-ChatBot/
├── assets/ # Fonts and images
├── data/ # Data storage
│ ├── database/ # SQLite databases
│ ├── datasets/ # Training datasets
│ ├── indexes/ # FAISS vector indexes
│ ├── models/ # Trained models
│ ├── training_files/ # Files for training
│ ├── voices/ # Voice recordings
│ └── web_content/ # Extracted content
├── docs/ # Documentation
├── src/ # Source code
│ ├── chatbot/ # Core chatbot functionality
│ │ ├── embeddings/ # Embedding implementations
│ │ ├── rag/ # RAG implementations
│ │ └── utils/ # Utility functions
│ ├── web/ # Web interfaces
│ └── *.py # Bot implementations
└── tests/ # Test files